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Understanding Adversarial ML

How machine learning works?

What is the ML influence in malware detection?

Where are the machine learning vulnerabilities?
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Héctor D. Menéndez (UCL) Adversarial Machine Learning 5th April 2019 3 57



DEPARTMENT OF COMPUTER SCIENCE

Machine Learning

Statistical process that learns from a specific discrimi-
nation related to a set of objects.

Clustering: Divides objects into groups blindly, based
on similarities.

Classification: Supervised identification of patterns in
objects with the aim of separating them.
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Learning Example

You want to group objects by similarity.

1) Extract information about the objects or features (pre-
ferably numerical).

2) Define your notion of similarity.

3) Set your separability criteria and learning process,
i.e., your algorithm, and run it.
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General Structure
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Clustering
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Classification
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The Adversarial ML
Adversarial Machine Learning looks for vulnerabilities in
the discrimination to cheat the algorithm.
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The Malware Arms Race
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Malware/Benign-ware
classification

Researchers normally aim to create a methodology to
distinguish malware and benign-ware.

Current works apply classification algorithms for this
aim.

These algorithms learn from program features and aim
to identify patterns on them.
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Program features

Static analysis: information from the disassemble ver-
sion of the program, from the control flow graph, etc.

Dynamic analysis: information from traces, network,
registers, etc.

Binary-based analysis: information from the entropy or
n-gram distribution of files.
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Malware & ML production
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Machine Learning Vulnerabilities
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Machine Learning Vulnerabilities

Poisoning input (Causative)
Getting information (Exploratory)
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Machine Learning Vulnerabilities

Targeted attacked
Indiscriminate (FPs)
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Machine Learning Vulnerabilities

Integrity attack (FNs)
Availability (FPs/FNs)
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What is a vulnerability?

There are three relevant agents in ML: the oracle, the
feature space and the algorithm

The oracle provides the ground truth (e.g. labels)

The feature space represents the data features

The algorithm learns to discriminate using the features
and the oracle information
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Train/Test Distributions

ML supposes same train and test distributions

Adversaries part from this hypothesis aiming to find mis-
takes on the discrimination

Where are these mistakes?
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Cheating the oracle

Which color is this
dress?
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Cheating the oracle

And now?
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Cheating the oracle
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Cheating the feature space

Consider b known instance.

•b

Nb

ε

Nb = {x | d(x , b) < ε∧ C(x) = C(b)}

∃y ∈ Nb | O(y) 6= O(b)?
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Héctor D. Menéndez (UCL) Adversarial Machine Learning 5th April 2019 28 57



DEPARTMENT OF COMPUTER SCIENCE

Cheating the feature space

x

y

 95 

 100 

 1
00

 

 100 

 1
05

 

 105 

 105 

 110 

 110 

 110 

 110 

 115 

 115 

 115 

 120 

 125 

 130 

 135 

 140  145 

 150 

 155 

 155 

 160 

 160 

 165 

 165 

 170 

 1
70

 
 175 

 180 

 1
80

 

 185 

 190 

•
•

•

•
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Héctor D. Menéndez (UCL) Adversarial Machine Learning 5th April 2019 28 57



DEPARTMENT OF COMPUTER SCIENCE

Cheating the classifier
Jump the wall strategy
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Héctor D. Menéndez (UCL) Adversarial Machine Learning 5th April 2019 30 57



DEPARTMENT OF COMPUTER SCIENCE

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2 3 4

−2

0

2

4

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●

SVM classification plot
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What the adversary knows?
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What the adversary knows?
Level 0 (basic): Knows the oracle decision and has ac-
cess to the detector =⇒ Blind feedback

Level 1: Knows the classifier =⇒ Construction vulne-
rabilities

Level 2: Knows the feature space =⇒ Knows the re-
levant features

Level 3: Knows the training data =⇒ Replication
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Index

How machine learning works?

What is the ML influence in malware detection?

Where are the machine learning vulnerabilities?

How does Adversarial ML exploit vulnerabilities?

How does Adversarial ML work in practice?

Are there any protections?
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Adversarial ML in practice:
3 Use Cases

EvadeML

EEE

IagoDroid
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Adversarial ML in practice:
EvadeML

EvadeML aims to defeat 2 PDF malware detectors

It uses Genetic Programming to generate variants

It is a Level 3 adversary: replicates the detectors
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EvadeML Model
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EvadeML Encoding
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EvadeML Results
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EEE

EEE changes the malware shape via intelligent pac-
king

It injects controlled entropy regions to alter signatures
and entropy

It learns from the classifier using evolutionary compu-
tation

It needs no information about: the detector, training
data or feature space (Level 0)
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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EEE against Anti-Viruses
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IagoDroid
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IagoDroid

Attacks the malware triage process

It finds weaknesses on the feature space, incrementing
some features in realistic margins

It aims to reduce the number of changes

It replicates the detector (Level 3)
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The Triage process
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IagoDroid

Features
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ML algorithm
training
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RevealDroid
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Results
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Main Achievements

1 generation to find a misclassification

From 50 to 450 queries per sample

1 mutation is enough
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Transition Limits
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Index

How machine learning works?

What is the ML influence in malware detection?

Where are the machine learning vulnerabilities?

How does Adversarial ML exploit vulnerabilities?

How does Adversarial ML work in practice?

Are there any protections?
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Countermeasures

Construct a threat model before learning

Detect the attack and countermeasure it

Study the landscape and understand the gradient
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Further Reading
Chio, C., & Freeman, D. (2018). Machine Learning and
Security: Protecting Systems with Data and Algorithms.
“OŔeilly Media, Inc.”.
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