

Adversarial Machine Learning and its application to Malware

Héctor D. Menéndez

Department of Computer Science University College London

5th April 2019

Héctor D. Menéndez (UCL)

Understanding Adversarial ML

- How machine learning works?
- What is the ML influence in malware detection?
- Where are the machine learning vulnerabilities?
- How does Adversarial ML exploit vulnerabilities?
- How does Adversarial ML work in practice?
- Are there any protections?

Understanding Adversarial ML

How machine learning works?

- What is the ML influence in malware detection?
- Where are the machine learning vulnerabilities?
- How does Adversarial ML exploit vulnerabilities?
- How does Adversarial ML work in practice?
- Are there any protections?

Machine Learning

Statistical process that learns from a specific discrimination related to a set of objects.

Clustering: Divides objects into groups blindly, based on similarities.

Classification: Supervised identification of patterns in objects with the aim of separating them.

Learning Example

You want to group objects by similarity.

1) Extract information about the objects or **features** (preferably numerical).

2) Define your notion of **similarity**.

3) Set your separability criteria and learning process, i.e., your **algorithm**, and run it.

General Structure

DEPARTMENT OF COMPUTER SCIENCE

Clustering

The Adversarial ML

Adversarial Machine Learning looks for vulnerabilities in the discrimination to cheat the algorithm.

Understanding Adversarial ML

How machine learning works?

What is the ML influence in malware detection?

Where are the machine learning vulnerabilities?

How does Adversarial ML exploit vulnerabilities?

How does Adversarial ML work in practice?

Are there any protections?

The Malware Arms Race

Malware/Benign-ware classification

Researchers normally aim to create a methodology to distinguish malware and benign-ware.

Current works apply **classification** algorithms for this aim.

These algorithms learn from **program features** and aim to identify patterns on them.

Héctor D. Menéndez (UCL)

Program features

Static analysis: information from the disassemble version of the program, from the control flow graph, etc.

Dynamic analysis: information from traces, network, registers, etc.

Binary-based analysis: information from the entropy or n-gram distribution of files.

Malware & ML production

Index

How machine learning works?

What is the ML influence in malware detection?

Where are the machine learning vulnerabilities?

- How does Adversarial ML exploit vulnerabilities?
- How does Adversarial ML work in practice?

Are there any protections?

Machine Learning Vulnerabilities

Héctor D. Menéndez (UCL)

UC

Machine Learning Vulnerabilities

Machine Learning Vulnerabilities

Héctor D. Menéndez (UCL)

Machine Learning Vulnerabilities

UCL

Machine Learning Vulnerabilities

Index

How machine learning works?

- What is the ML influence in malware detection?
- Where are the machine learning vulnerabilities?

How does Adversarial ML exploit vulnerabilities?

How does Adversarial ML work in practice?

Are there any protections?

What is a vulnerability?

There are three relevant agents in ML: the *oracle*, the feature space and the algorithm

The **oracle** provides the ground truth (e.g. labels)

The feature space represents the data features

The **algorithm** learns to discriminate using the features and the oracle information

Train/Test Distributions

ML supposes same train and test distributions

Adversaries part from this hypothesis aiming to find mistakes on the discrimination

Where are these mistakes?

Cheating the oracle

Cheating the oracle

Cheating the oracle

Cheating the feature space

Consider *b* known instance.

Cheating the feature space

>

Cheating the feature space

>
[±]UCL

Cheating the feature space

 \geq

[•]UCL

Cheating the feature space

 \geq

[•]UCL

Cheating the feature space

 \geq

[±]UCL

Cheating the feature space

 \geq

Héctor D. Menéndez (UCL)

Cheating the classifier

Jump the wall strategy

AV/H -1---!!!--!!---

OV/04 - 1 - - - 1/2 - - - 1 - - - - 1 - - -

30 57

UCL

What the adversary knows?

Héctor D. Menéndez (UCL)

Adversarial Machine Learning

What the adversary knows?

Level 0 (basic): Knows the oracle decision and has access to the detector \implies Blind feedback

Level 1: Knows the classifier \implies Construction vulnerabilities

Level 2: Knows the feature space \implies Knows the relevant features

Level 3: Knows the training data \implies Replication

[•]UCL

Index

How machine learning works?

- What is the ML influence in malware detection?
- Where are the machine learning vulnerabilities?
- How does Adversarial ML exploit vulnerabilities?
- How does Adversarial ML work in practice?

Are there any protections?

Adversarial ML in practice: 3 Use Cases

EvadeML

EEE

lagoDroid

Héctor D. Menéndez (UCL)

Adversarial ML in practice: EvadeML

EvadeML aims to defeat 2 PDF malware detectors

It uses Genetic Programming to generate variants

It is a Level 3 adversary: replicates the detectors

EvadeML Model

EvadeML Encoding

Héctor D. Menéndez (UCL)

EvadeML Results

	PDFrate	Hidost
Accuracy	0.9976	0.9996
False Negative Rate	0.0000	0.0056
False Negative Rate against Adversary	1.0000	1.0000

Héctor D. Menéndez (UCL)

UCL

EEE

EEE changes the malware shape via **intelligent packing**

It injects controlled **entropy** regions to alter signatures and entropy

It **learns from the classifier** using evolutionary computation

It needs **no information** about: the detector, training data or feature space (Level 0)

[±]UCL

EEE: The Evolutionary Packer

Index

Variant

Héctor D. Menéndez (UCL)

<u><u></u>LOCI</u>

Héctor D. Menéndez (UCL)

Adversarial Machine Learning

Population Detection Evolution

Héctor D. Menéndez (UCL)

Adversarial Machine Learning

AUCI

EEE against Anti-Viruses

VT Detection Percentage

UC

Héctor D. Menéndez (UCL)

Adversarial Machine Learning

lagoDroid

Attacks the malware triage process

It finds weaknesses on the **feature space**, incrementing some features in realistic margins

It aims to reduce the number of changes

It replicates the detector (Level 3)

The Triage process

DEPARTMENT OF COMPUTER SCIENCE

lagoDroid

RevealDroid

Classifier	Code structures	Permissions	Api Calls	Intent-actions	Flow analysis	Tested for families	Freely available
						classification	to download
RevealDroid (Garcia et al., 2015)	×	×	1	1	1	1	1
DroidSIFT (Zhang et al., 2014)	×	1	1	1	1	×	×
Dendroid (Suarez-Tangil et al., 2014)	1	×	×	×	×	1	1
Drebin (Arp et al., 2014)	×	1	1	1	×	1	×
DroidMiner (Yang et al., 2014)	×	×	1	1	×	1	×
DroidAPIMiner (Aafer et al., 2013)	×	×	1	×	×	×	×
VILO (Lakhotia et al., 2013)	1	×	×	×	×	1	×
DroidLegacy (Deshotels et al., 2014)	×	×	1	×	×	1	1
MAST (Chakradeo et al., 2013)	1	1	×	1	×	×	×

Results

	-			
Family	First Sol.	Avg. Conv.	Avg. Mod.	Feature
Plankton	1	3.3	1.0	ACTION_INPUT_METHOD_CHANGED (0.7)
GinMaster	1	3.7	1.0	SMS_MMS (0.6)
Kmin	1	4.3	1.0	ACTION_USER_PRESENT (0.6)
Glodream	1	4.7	0.8	ACTION_INPUT_METHOD_CHANGED (0.4)
BaseBridge	Inf	Inf	-	-
Nyleaker	1	3.6	1.0	NETWORK_LOG (0.4)
Gappusin	1	3.4	0.9	ACTION_INPUT_METHOD_CHANGED (0.3)
Geinimi	1	3.9	1.0	NETWORK_INFORMATION (0.5)
Imlog	1	4.7	1.2	ACTION_INPUT_METHOD_CHANGED (0.7)
DroidKungFu	1	7.2	0.7	IPC_NETWORK (0.2)
Iconosys	1	3.5	1.1	NETWORK_LOG (0.3)
Adrd	1	3.6	0.8	ACTION_INPUT_METHOD_CHANGED (0.5)
DroidDream	1	4.1	0.8	ACTION_INPUT_METHOD_CHANGED (0.4)

Main Achievements

- 1 generation to find a misclassification
- From 50 to 450 queries per sample
- 1 mutation is enough

UCL

Index

- How machine learning works?
- What is the ML influence in malware detection?
- Where are the machine learning vulnerabilities?
- How does Adversarial ML exploit vulnerabilities?
- How does Adversarial ML work in practice?

Are there any protections?

Countermeasures

Construct a threat model before learning

Detect the attack and countermeasure it

Study the landscape and understand the gradient

Further Reading

Chio, C., & Freeman, D. (2018). Machine Learning and Security: Protecting Systems with Data and Algorithms. "OReilly Media, Inc.".

Adversarial Machine Learning and its application to Malware

Héctor D. Menéndez

Department of Computer Science University College London

5th April 2019

Héctor D. Menéndez (UCL)