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Machine Learning

Statistical process that learns from a specific discrimi-
nation related to a set of objects.

Clustering: Divides objects into groups blindly, based
on similarities.

Classification: Supervised identification of patterns in
objects with the aim of separating them.
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Learning Example

You want to group objects by similarity.

1) Extract information about the objects or features (pre-
ferably numerical).

2) Define your notion of similarity.

3) Set your separability criteria and learning process,
i.e., your algorithm, and run it.
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Clustering
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Classification
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The Adversarial ML

Adversarial Machine Learning looks for vulnerabilities in
the discrimination to cheat the algorithm.
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The Malware Arms Race
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Malware/Benign-ware
classification

Researchers normally aim to create a methodology to
distinguish malware and benign-ware.

Current works apply classification algorithms for this
aim.

These algorithms learn from program features and aim
to identify patterns on them.

Héctor D. Menéndez (UCL) Adversarial Machine Learning 5th April 2019 12|57



DEPARTMENT OF COMPUTER SCIENCE
.

Program features

Static analysis: information from the disassemble ver-
sion of the program, from the control flow graph, etc.

Dynamic analysis: information from traces, network,
registers, etc.

Binary-based analysis: information from the entropy or
n-gram distribution of files.
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Malware & ML production
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Machine Learning Vulnerabilities
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Machine Learning Vulnerabilities
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Machine Learning Vulnerabilities
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Machine Learning Vulnerabilities
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Machine Learning Vulnerabilities
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What is a vulnerability?

There are three relevant agents in ML: the oracle, the
feature space and the algorithm

The oracle provides the ground truth (e.g. labels)
The feature space represents the data features

The algorithm learns to discriminate using the features
and the oracle information
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Train/Test Distributions

ML supposes same train and test distributions

Adversaries part from this hypothesis aiming to find mis-
takes on the discrimination

Where are these mistakes?
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Cheating the oracle

Which color is this
dress?
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Cheating the oracle

And now?
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Cheating the oracle
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Cheating the feature space
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Cheating the feature space
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Cheating the classifier

Jump the wall strategy
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What the adversary knows?

Feature Set Training
Dataset

..

Classifier Algorithm
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What the adversary knows?

Level 0 (basic): Knows the oracle decision and has ac-
cess to the detector =— Blind feedback

Level 1: Knows the classifier = Construction vulne-
rabilities

Level 2: Knows the feature space — Knows the re-
levant features

Level 3: Knows the training data = Replication
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Adversarial ML in practice:
3 Use Cases

EvadeML
EEE

lagoDroid
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Adversarial ML in practice:
EvadeML

EvadeML aims to defeat 2 PDF malware detectors
It uses Genetic Programming to generate variants

It is a Level 3 adversary: replicates the detectors
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EvadeML Model
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EvadeML Encoding

10 0bj <<
[Type /Catalog
/Pages 20 R
/OpenAction <<
/S JavaScript
1JS alert('hello');
>>
>> endobj

Header

200bj<<

Body [Type /Pages
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EvadeML Results

PDFrate Hidost
Accuracy 0.9976 0.9996

False Negative Rate 0.0000 0.0056

Falsg Negative Rate 1.0000 1.0000
against Adversary
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EEE

EEE changes the malware shape via intelligent pac-
king

It injects controlled entropy regions to alter signatures
and entropy

It learns from the classifier using evolutionary compu-
tation

It needs no information about: the detector, training
data or feature space (Level 0)
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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Stub

B E NN

Variant

Héctor D. Menéndez (UCL) 5th April 2019 41|57



DEPARTMENT OF COMPUTER SCIENCE
.

EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer
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EEE: The Evolutionary Packer

Population Detection Evolution
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EEE against Anti-Viruses
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lagoDroid
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lagoDroid

Attacks the malware triage process

It finds weaknesses on the feature space, incrementing
some features in realistic margins

It aims to reduce the nhumber of changes

It replicates the detector (Level 3)
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The Triage process

Manual code reversing ‘

Interactive behavior analysis

Static properties analysis

Fully-automated analysis

Héctor D. Menéndez (U Adversarial Machine Learning 5th April 2019



DEPARTMENT OF COMPUTER SCIENCE

lagoDroid

Classifier building
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RevealDroid

Tested for families Freely available
Classifier Code structures  Permissions ~ Api Calls Intent-actions Flow analysis to download
RevealDroid (Garcia et al., 2015) X X v v v v v
DroidSIFT (Zhang et al., 2014) X v v v v X X
Dendroid (Suarez-Tangil et al., 2014) v X X X X v v
Drebin (Arp et al., 2014) X v v v x v X
DroidMiner (Yang et al., 2014) X X v v X v X
Droid APIMiner (Aafer et al., 2013) X X v X x x X
VILO (Lakhotia et al., 2013) v X X X X v X
DroidLegacy (Deshotels et al., 2014) X X v X X v v
MAST (Chakradeo et al., 2013) v v X v X x X
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Results

Family First Sol. Avg. Conv. Avg. Mod. Feature

Plankton 1 3.3 1.0 ACTION_INPUT_METHOD_CHANGED (0.7)
GinMaster 1 3.7 1.0 SMS_MMS (0.6)

Kmin 1 4.3 1.0 ACTION_USER_PRESENT (0.6)

Glodream 1 4.7 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)
BaseBridge Inf Inf - -

Nyleaker 1 3.6 1.0 NETWORK_LOG (0.4)

Gappusin 1 34 0.9 ACTION_INPUT_METHOD_CHANGED (0.3)
Geinimi 1 3.9 1.0 NETWORK_INFORMATION (0.5)

Imlog 1 4.7 1.2 ACTION_INPUT_-METHOD_CHANGED (0.7)
DroidKungFu 1 7.2 0.7 IPC_NETWORK (0.2)

Iconosys 1 3.5 1.1 NETWORK_LOG (0.3)

Adrd 1 3.6 0.8 ACTION_INPUT_METHOD_CHANGED (0.5)
DroidDream 1 4.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)
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Main Achievements

1 generation to find a misclassification
From 50 to 450 queries per sample

1 mutation is enough
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Transition Limits
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Countermeasures

Construct a threat model before learning
Detect the attack and countermeasure it

Study the landscape and understand the gradient
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Further Reading

Chio, C., & Freeman, D. (2018). Machine Learning and
Security: Protecting Systems with Data and Algorithms.
“OReilly Media, Inc”.

Machine
Learning &
Security«s

Clarence Chio & David Freeman
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